
Dynamic Resource Allocation Using
Performance Forecasting

Paulo Moura, Fabio Kon
Department of Computer Science

University of São Paulo
Brazil

{pbmoura, kon}@ime.usp.br

Spyros Voulgaris
Department of Computer Sciences

VU University Amsterdam
The Netherlands

spyros.voulgaris@vu.nl

Maarten van Steen
Centre for Telematics and Information Technology

University of Twente
The Netherlands

m.r.vansteen@utwente.nl

Abstract—To benefit from the performance gains and cost
savings enabled by elasticity in cloud IaaS environments, effective
automated mechanisms for scaling are essential. This automation
requires monitoring system status and defining criteria to trigger
allocation and deallocation of resources. While these criteria are
usually based upon resource utilization, this may be inadequate
due to the impossibility of identifying the actual amount of
required resources. Consequently, most systems update resource
allocation in small increments, e.g., one VM at a time, which
may negatively affect performance and cost. In this paper,
we propose a novel approach in which the system monitors
workload, instead of utilization, and, by means of a scalability
model, it makes predictions of resource demand and updates the
allocated resources accordingly. We provide an implementation
of this approach and describe experimental results that show its
effectiveness.

I. INTRODUCTION

Cloud computing is a large and growing market: 83% of
CIOs (Chief Information Officers) are currently considering
the use of cloud IaaS as an option, and workloads in cloud IaaS
providers are growing faster than on-premises workloads [1].
Cloud Computing provides agility in setting up and maintain-
ing systems with the key benefit of its simplicity in allocating
and deallocating resources on demand. To stay competitive, it
is crucial to benefit from this technology and, to achieve that,
systems with self-scaling capabilities are becoming more and
more common.

The standard approach to self-scaling is to closely monitor
resource utilization and, when pre-established thresholds are
crossed, make the corresponding adjustments. One limitation
of this approach is that it is not possible to directly assess the
actual demand for resources. Updates are performed incre-
mentally, e.g., by adding or removing virtual machines from
the system’s pool, until a stable configuration is found. One
downside of incremental updates is that, when facing a drastic
increase in the workload, the time to reach an adequate state
can be long, affecting performance in the meantime. This is
aggravated by the fact that adding a new VM to a system’s pool
involves, at the least, initializing the VM, deploying the service
and related dependencies, and migrating data, which may take
several minutes. Thus, performing a sequence of small changes
can lead to higher aggregated cost when compared to a single,
larger change that immediately meets the demand.

Something similar happens when the load decreases drasti-
cally. If the system deallocates one VM at a time in each step,
idle resources may remain allocated for a long time.

In this paper, we propose a novel approach based on esti-
mates of resource demand variation caused by workload fluc-
tuations. We adopted the Universal Scalability Law, developed
by Neil Gunther [2], as a starting point. The relation between
performance and resource availability provided by Gunther’s
model is used to estimate the resources needed to deliver the
throughput required to process the current workload.

By doing so, we address the problem of auto-scaling
systems running in cloud IaaS environments, enabling cost
minimization while delivering adequate performance to users.

The paper is organized as follows. After a discussion of
related work in Section II, we offer an overview of the
Universal Scalability Law in Section III. Our proposal is
discussed in Section IV and an experimental validation is
presented in Section V. Finally, we summarize our results and
contemplate future work in Section VI.

II. RELATED WORK

Much effort has been put on research to improve automated
resource management in clouds. The general approach is
to define rules based on utilization that trigger actions to
request or release resources. Mamani et al. [3] worked with
the cumulative difference between current utilization and pre-
established limits, aiming at improved reaction to workload
variation. Lim et al. [4] worked on proportional thresholds
that are adapted based on cluster size to improve accuracy.
But making elasticity decisions based on utilization may be
imprecise because it may lead to states which are not ideal
and require gradual updates.

Some alternative approaches are based on queue size.
Salah et al. [5] proposed a model as such. But they consider
that requests are enqueued in the load balancer, which is not
usually the case and limits system capacity, as distributing the
waiting queue among the servers increases the overall queue
capacity. The model proposed by Aljohani et al. [6] considers a
distributed queue. However, it is based on simulations in which
the number of available servers is set a priori, which is contrary
to the unlimited resources assumption typically advocated by
cloud providers.

Just as the works of Salah and Aljohani, approaches to
automate resource management are frequently grounded on
queuing theory and stochastic processes [7], [8], [9], [10], [11].
One common limitation of those approaches is the choice for
simplistic models that may not capture the behavior presented
by real systems and workloads. Some researches follow dif-
ferent approaches. Gong et al. [12] applied signal processing
to find patterns in workload and resource usage, relying on
Markov chains when no pattern was identified. Vasić et al. [13]
experimented with numerous off-the-shelf machine-learning
techniques, reporting good results with Bayesian models and
decision trees. Both approaches are based on learning patterns
of workload and the configuration to handle them. Thus, in the
beginning of system execution, with no previous knowledge,
they rely on other simpler techniques, such as utilization limits.
Additionally, they do not provide good predictions for new, not
yet experienced, workloads.

The decision process involving allocation and deallocation
of resources generally requires communication. In the common
approach, the control unit must get utilization measurements
from all service instances. There are proposals whose process
is yet more time demanding, with communication among the
different services that compose the system, to identify which
modification should be performed. Mencagli et al. [14] uses a
model to estimate response times of each system component,
based on the response time of the services it depends on,
and makes a number of iterations, when they exchange those
estimations, to find the optimal configuration. Dejun et al. [7],
[8] models the system as an acyclic directed graph with a
root node and communication is partly ordered, going from
leaves to the root, which centralizes the resource management
decisions.

We consider our proposal distinguishing as decisions are
based on the workload, and are centralized in a control process
running with the load balancer. This solution requires no
communication neither considering a single service nor in a
composition, because all information required to make the
decisions are controlled by the load balancer. Also, we use
a model that considers common limitations to scalability, as
will be seen in the next sections.

III. UNIVERSAL SCALABILITY LAW

As defined by Gunther, the Universal Scalability Law
(USL) [15], [2] tries to explain performance improvement via
parallelism but also considering the constraints that limit the
speedups.

One such constraint is the assumption that workload pro-
cessing is rarely completely parallelized. Even if each task
execution is independent, there normally are managerial tasks,
such as load balancing or splitting and merging data, that run
sequentially. Also, often a large number of processes compete
for the same processor and occasionally need to wait. Such
sequential portions incur contention delays.

Fig. 1 shows how contention limits speedup obtained from
parallelism. Without contention, changing a system architec-
ture from one to four processes brings down execution time to

Time
Parallelization,

without contention

Parallelization,

with contention

Before BeforeAfter After

Fig. 1. Contention limits performance gains.

Time

Increased parallelism
Increased coherency fraction

4 Workers
8 Workers

Coherency fraction

Per-worker compute time

Single
worker

Fig. 2. Coherency limits performance gains and can cause degradation.

one quarter. With contention, the reduction in execution time
is limited. Contention limits system speedup through parallel
processing because it does not improve the execution time
of the sequential portions. The more parallel processes used,
the larger the proportion of sequential execution time, because
it is constant while the parallel execution time drops. Thus,
there is a point after which there is no meaningful gain in
increasing parallelism, as the total execution time is dominated
by the sequential execution time, a fact first described by
Amdahl [16].

Besides contention, systems may need to deal with data
exchange between tasks executing in parallel, referred to as
coherency. Coherency delays are caused by the need to bring
shared data into a consistent state. Whenever one of multiple
independent processing units needs to save data, it must
disseminate the operation so that all units update their data,
maintaining consistency among them all. This demands extra
time.

Coherency increases the execution time of each parallel
processing unit, as depicted in Fig. 2. As all processing units
must synchronize with each other, the number of messages
exchanged for data synchronization increases quadratically
with the number of processing units. Therefore, more par-
allelism means more time spent by each unit for synchro-
nization. Hence, coherency constraints are more limiting than
contention, because after a certain degree of parallelism,
synchronization time is so high that performance drops.

According to the USL model, the relation between perfor-
mance and parallelism is governed by the equation:

C(n) =
n

1 + a(n− 1) + nb(n− 1)
, (1)

where n is the number of parallel processing units, a is the
contention factor and b is the coherency factor. C stands for
capacity and is obtained by means of normalization, dividing
the throughput reached with n units by the throughput of

0 5 10 15 20 25 30

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

parallel units (n)

C
ap

ac
ity

 (
C

)

a=0, b=0
a=0.2, b=0
a=0.2, b=0.003

Fig. 3. The effects of contention and coherency on speedup.

sequential execution – which is equivalent to the speedup.
Contention and coherency are measured as fractions of the
sequential execution time: contention is the fraction that must
run sequentially and coherency is the fraction spent on one
data synchronization operation.

Figure 3 shows how contention and coherency limit perfor-
mance gains. As can be seen, in the presence of coherency
(blue dashed curve), there is a performance peak followed by
degradation. In such cases, the number of parallel processes
that provide maximum throughput may be calculated as fol-
lows:

nmax =

⌊√
1− a

b

⌋
. (2)

As an example, with 0.2 of contention and 0.003 of co-
herency, we have that the maximum throughput is obtained
with (nmax) 16 parallel processes, providing capacity of 3.39
(C(nmax)), as shown in Fig. 3.

IV. PROPOSAL

Many successful online services rely on the Service Ori-
ented Architecture (SOA). It enables the creation of software
systems based on the composition of a collection of small
services, each a self-contained autonomous unit responsible
for a given functionality. Two critical distinctions of SOA
are message orientation – services interact by exchanging
messages – and coarse granularity – services tend to use
a small number of operations [17]. Thus, a service-oriented
system is composed of a set of services, each with specific
attributes, that communicate via message exchange.

One downside of SOA, in comparison to traditional layered
systems, is that requests may need to go through more levels
of the software stack (accessing many services), which can
affect performance. On the other hand, functional partitioning
is an important issue regarding scalability [18], which may be
achieved by adding more servers running service instances and
distributing the workload by means of a load balancer. This
approach enables each service to scale independently.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
5

10
15

20
25

30

Capacity (C)

pa

ra
lle

l u
ni

ts
 (

n)

Fig. 4. Inversion of USL function

Increasing the number of service instances potentially in-
creases the processing capability of the service by the same
amount. However, scalability is affected by the need to keep
data consistent or balanced. Both sharding or replication re-
quire that instances exchange messages to keep data balanced
or consistent among them all. Hence, our choice of a model
that considers that performance varies with scale, as USL
does: it takes into account the time that the services spend
synchronizing with others.

Since we are interested in identifying the amount of re-
sources needed to handle a given workload, we need to invert
that function. This results in two partial functions (Fig. 4):
one whose range goes up to nmax (red solid curve), and the
other, from that on (blue dashed curve). We are interested
only in the first portion, which provides values for the number
of resources up to system capacity, which is modeled by
Equation 3.

n(C) =
b− a+ 1/C −

√
(a− b− 1/C)2 − 4b(1− a)

2b
(3)

In order to handle varying workloads, we would like to
modify a given system to keep throughput in equilibrium with
the rate of requests (arrival rate). Otherwise, the system may
become overloaded and, if the workload persists, the request
queue may grow indefinitely, affecting the system’s stability
and performance. Since throughput capacity is a function of
the number of service instances that are available, we use
a control process to periodically monitor the load balancer
and use the equation previously discussed (3) to estimate the
adequate number of instances required to handle the current
load. The goal of this control process is to, as much as
possible, offer the best performance at minimum cost. The
procedure is described in the next section.

A. Runtime algorithm

Resource demand is estimated following the algorithm in
Fig. 5, periodically executed by the control process. The terms
in monospaced font are managed by the load balancer. It will

1: arrivalRate← arrivals/monitoringInterval
2: capacity ← arrivalRate/supportedArrivalRate
3: if capacity >= C(nmax) then
4: estimated n← nmax

5: else
6: estimated n← ceil(n(capacity))
7: end if
8: diff ← estimated n− current n

9: if diff > 0 then
10: addToResourcePool(diff)
11: else if diff < 0 then
12: if queueSize > estimated n ∗ nodeCapacity then
13: diff ← queueSize/nodeCapacity− n
14: end if
15: removeFromResourcePool(diff)
16: end if
17: arrivals← 0

Fig. 5. Runtime algorithm to estimate resource demand.

either update them along the execution or receive values as
parameter during initialization.

The load balancer must keep track of two runtime metrics:
the queue size (all current requests for the service) and the
number of arrivals (new requests) since the last execution of
the monitor. The load balancer must also know the monitoring
interval, which is the time interval between two consecutive
executions of the monitor.

In addition, the load balancer must be configured with a set
of parameters related to the service characteristics: contention
factor, coherency factor, maximum throughput achievable with
one instance, and the average queue size to induce such
throughput. In the next section we show how to estimate those
parameters.

Lines 1 and 2 of the algorithm compute the arrival rate in
the period since the last execution and estimate the required
capacity to handle the new workload. If that capacity is higher
than what USL estimates as the maximum achievable, the pool
size is set to nmax; otherwise it is estimated using equation 3,
whose result is rounded up because the pool size must be
an integer and rounding down might cause under-provisioning
(lines 3 to 7). Then, it computes the difference between the
estimated and the current pool sizes, to update it accordingly.
If it is necessary to increase the pool size, the required number
of instances is promptly requested, in line 10. However, if the
estimate points to a smaller pool size, it makes an additional
verification in line 12. If the current queue size is too high to
be handled by the estimated pool size, the control computes
the minimum pool size to handle it. Then, excessive instances
are released (line 15). Lines 12 and 13 are important to
avoid releasing resources prematurely if there are still several
requests in the queue, waiting to be processed.

B. Estimating service related parameters

We propose to estimate the service-related parameters re-
quired to execute the procedure presented in the previous

section by means of load tests, in an initial profiling procedure.
In a first phase, the goal is to identify the number of concurrent
clients supported by a single working instance. We run a
sequence of load tests, keeping the service configuration static,
with a single instance processing all the requests, and varying
the workload.

The simplest approach for doing that is starting with a single
simulated client and adding more clients at each subsequent
run. But we can use additional information to reduce the
number of load tests. For instance, we can measure resource
utilization caused by a workload to estimate the maximum
workload supported and limit the load tests around that level.

At the end of this step, we identify the number of concur-
rent clients supported by the service in such circumstances
(nodeCapacity) and estimate the throughput for that work-
load, which is equivalent to the supported mean arrival rate
(supportedArrivalRate).

Then, we can move to the second phase of tests. It comprises
another sequence of runs, starting with one instance available
in the service pool and increasing the pool size at each sub-
sequent experiment. The workload should be nodeCapacity
in the first run and grow linearly with the pool size. We can
then compute the throughput of each run and combine the
results with the respective pool sizes to estimate contention and
coherency, following the method proposed by Gunther [19].
The method does not require exhaustive experiments nor
reaching capacity limit. The author suggests at least six data
points.

Contention and coherency estimates are used by equations
1 and 3, used at lines 3 and 6 in the procedure shown Fig. 5,
respectively.

V. EXPERIMENTAL VALIDATION

To evaluate our proposal, we executed a number of exper-
iments on DAS-51, a cluster composed of 68 nodes with two
8-core processors working at 2.4GHz, 64GB of RAM, and
interconnected via InfiniBand and Gigabit Ethernet.

We implemented a basic setup composed of a load gen-
erator, a load balancer, a pool manager, and workers, in-
teracting as shown in Fig. 6. The load balancer receives
requests from the load generator and distributes them among
the workers. Workers process requests and exchange syn-
chronization messages. The monitoring loop, running in the
load balancer, requests and releases workers from/to the pool
manager. For the experiments presented in this paper, the
parameters estimated via the profiling procedure as described
in Section IV-B are listed in table I. The source code for
the system and experiments are available as open source at
https://github.com/pbmoura/scalability experiments.

Parameter estimation was obtained with a simplified imple-
mentation of the load balancer which distributes requests in
a round-robin fashion, with neither the monitoring loop nor
interaction with the pool manager. This is because, during the
experiments for parameter estimation, the system must remain

1http://www.cs.vu.nl/das5/

Load generator Load balancer Pool manager

Worker-2Worker-1 Worker-3

Worker-N

Fig. 6. Experiment setup

TABLE I
SETUP ESTIMATED PARAMETERS

Parameter Value
nodeCapacity 4
arrivalRate1 0.769

a 0.0398
b 0.0031

at the specific configurations defined in the load tests and
should not auto-scale. The load generator produced uniform
workloads, varying the number of simultaneous processes to
simulate concurrent clients. The elasticity experiments were
executed with a single thread of requests, but varying the inter-
request interval along the execution.

Here, we describe the experiments used to observe how the
method proposed in this paper takes advantage of the cloud’s
elasticity, adapting the system’s pool size to the workload. We
compare our proposed method to an implementation based
on resource utilization. To do so, we implemented a load
balancer that requests and releases resources based on overall
utilization, and configured it to remove one instance from the
pool when utilization is below 35% and request one instance
when utilization surpasses 80%.

A. Experiment 1

We start by presenting an experiment to show the difference
in reaction time between our approach and a utilization-
based, single-step approach, in which the resource pool is
updated one VM at a time. To simulate a drastic change
in the workload, we begin the experiment with a workload
of 1 request per second and increase it to 4 requests per
second. This variation demanded an increase in the pool size,
and the workload remained at that level long enough for
both approaches to stabilize the performance. The monitoring
period is 20 seconds. Figure 7 shows the variation in the queue
sizes along the experiment, in comparison to the variation in
the workload. While the single-step approach took 194 seconds
to stabilize, our proposal, using USL, needed only 94 seconds.
This better reaction time also guaranteed less queue growth.

Better performance is an effect of the different strategies for
resource allocation, as shown in Fig. 8. Even the allocation
of more resources in the beginning of the higher load period
maintained the overall cost lower, for two reasons. Due to
its delayed response, the single-step approach needed to add
more instances to the pool to deal with the larger increase

0 100 200 300 400

0
20

40
60

80
10

0
12

0

time (sec.)

qu
eu

e
si

ze

0
1

2
3

4

w
or

kl
oa

d

workload
single−step
USL

Fig. 7. Experiment 1: Queue size variation

0 100 200 300 400

0
2

4
6

8
10

time (sec.)

po
ol

 s
iz

e

0
1

2
3

4

w
or

kl
oa

d

workload
single−step
USL

Fig. 8. Experiment1: Pool size variation

in queue size. When the workload dropped, USL provided a
faster adjustment to the pool size, avoiding wasting resources.

The different reactions to workload variation led to differ-
ences in the response times. Fig. 9 shows the response time of
each request executed in the experiments, ordered by departure
time. As can be seen, performance delivered to users by our
algorithm is better. Just for the sake of an example, if we
consider an SLA of 13 seconds, the number of SLA violations
with the single-step approach is more than five times higher
than that with our USL-based approach. Table II summarizes
a comparison of the approaches. We consider cost as the
total time of VM allocation, computed as the area under the
respective pool size lines of the graph presented in Fig. 8.

B. Experiment 2

We were considering whether a small monitoring period
would make the single-step approach as effective or even
better than our approach. Thus, to evaluate how the monitoring
period affects the performance of the two approaches, we ran
a new experiment using a shorter duration for the increased
workload of 4 requests/s. After 30s at 0.5 requests per second,
we maintained the load at 4 requests per second for 60s,
and switched back to 1 request per second for 30s. With this
workload profile, we ran a sequence of experiments increasing

0 200 400 600 800 1000

0
10

00
0

20
00

0
30

00
0

#request

re
sp

on
se

 ti
m

e
(m

s)

% SLA violations
single−step 52%
USL 9%

Fig. 9. Experiment1: Response time variation

TABLE II
EXPERIMENT 1 METRICS COMPARISON

Metric USL Single-step
Max queue size 70 122

Time to stabilization 94 194
Max pool size 8 12
Avg pool size 5.18 6.88

Cost 2200.96 2929.1
Avg service time (std dev) 8.45 (3.6) 16.44 (9.82)

SLA violations % 11 64

the monitoring period from 1s to 30s. Table III shows the
differences in terms of SLA violations, considering an SLA
of eight seconds.

We can see that increasing the monitoring period quickly
degraded the performance provided by the single-step ap-
proach, while with USL the degradation is slower. Indeed,
with a monitoring period of 1s, which might incur into a large
overhead in many situations, the single-step approach performs
better. But with all other monitoring periods, it is worth to
predict the required amount of resources with the USL-based
approach.

The efficacy of a pool-update policy depends on when, in
the period between two monitoring iterations, the workload
has changed. If that happens right after the previous iteration,
the system will run overloaded for a longer period, resulting
in more SLA violations.

TABLE III
EXPERIMENT 2 - MONITORING PERIOD VS. SLA VIOLATIONS

Monitoring period USL Single-step
1 11 0
2 2 5
3 1 17
4 4 66
5 6 72
7 13 70
10 13 80
13 22 83
15 66 85
20 27 85
30 71 88

0 100 200 300

0
10

20
30

40

time (sec.)

qu
eu

e
si

ze

0
2

4
6

8
10

12

po
ol

 s
iz

e/
w

or
kl

oa
d

0
2

4
6

8
10

12queue
pool
workload

Fig. 10. Experiment 3: Baseline

That explains, for instance, why USL provided worse per-
formance with 15s than with 20s of monitoring period. The
workload jumped from one to four requests per second after
30 seconds of execution. Thus, when experimenting with 15s
intervals, the system was overloaded during almost all of the
15s period of the third inter-monitoring cycle. In contrast, in
the case of 20s intervals, the overload happened during the
last 10s of the second cycle, yielding fewer violations. The
same is also valid for the monitoring period of 30s. Still, in
both cases, performance was better than using single-step.

Looking at the single-step approach, the results suffer from
the additional time the system was overloaded before the
reaction. Making decisions simply based on utilization does
not make it possible to determine what is the amount of
demanded resources, forcing the system to incrementally add
a single instance per step. More time is needed to achieve an
adequate pool size.

C. Experiment 3

To observe what would be the behavior of both approaches
in a more complex situation, we now experiment with a
workload with two spikes at different frequencies of requests/s.
The frequency of requests in this workload follows a pattern
that stays 60s in each of the following levels of requests/s: 1,
4, 1, 3, 5, 1, as can be seen in the dotted line in Fig. 11.

The focus is on the second spike. The intention is to
observe the performance of each method with a sudden drop
in the workload followed by a new increase. To compare
the performance of both approaches with a close-to-optimal
allocation of resources, we use, as a baseline, an experiment
with an 1s monitoring period using USL to estimate demand.
As can be seen in Fig. 10, this baseline provides a quick
reaction to workload increases and a pool size reduction
accompanying the queue size, avoiding overload in both cases.
Thus, we can consider the system was never overloaded.

We compare, then, executions with the USL and single-step
approaches using a monitoring period of 20s. Figures 11 and
12 show the variations of the queue and pool sizes with both

0 100 200 300

0
20

40
60

80
10

0

time (sec.)

qu
eu

e
si

ze

0
1

2
3

4
5

w
or

kl
oa

d

workload
single−step
USL

Fig. 11. Experiment 3: Queue size variation

0 100 200 300

0
2

4
6

8
10

12

time (sec.)

po
ol

 s
iz

e

0
1

2
3

4
5

w
or

kl
oa

d

workload
single−step
USL

Fig. 12. Experiment 3: Pool size variation

approaches. Regarding the second load spike, we see that, due
to the delayed pool size reduction, the single-step approach
has still a large pool of service replicas when the workload
increases, avoiding overload. Thanks to that, it provides better
performance, resulting in less SLA violations (Fig. 13). This
is an interesting case in which the slower reaction time of the
single-step approach resulted in a better overall performance,
because it was lucky to have the second spike that used the
resources it still had. But, as shown in Figure 12 and Table IV
this better performance has a price as it comes at an extra cost
in terms of resource allocation.

Table IV shows a comparison of USL, single-step, and the
baseline. Our proposal produced a better average performance
in comparison to the single-step approach, which can be ob-
served in the average queue size and response time. Regarding
average pool size and cost, our proposal performed better than
the baseline. That can be explained by the fact that, when there
is a workload increase, it is partially captured by the control
process in its subsequent execution. The average workload
is estimated based on a portion of the workload before the
increase and another portion after the increase. Only in the next
iteration is the workload increase fully captured. Then, instead
of increasing the pool size in a single step, the system does

0 200 400 600 800

0
10

00
0

20
00

0
30

00
0

#request

re
sp

on
se

 ti
m

e
(m

s)

% SLA violations
single−step 25%
USL 33%

Fig. 13. Experiment 3: Response time

TABLE IV
EXPERIMENT 3 METRICS COMPARISON

Metric USL Single-step Baseline
Avg queue size 28.16 29.87 16.91
Avg pool size 4.76 5.93 5.22

Cost 1735.57 2171.38 1904.56
Avg service time (std dev) 11.38 (4.44) 12.14 (8.26) 6.85 (1.05)

SLA violations % 33 25 0

it in two, reducing the average pool size and, consequently,
the cost of running the system. The downside is the system
overload and SLA violations in the meantime.

Increasing the interval between the spikes so that the single-
step approach has enough time to reach the same pool size
set with USL makes both spikes present similar effects, as
shown in Fig. 14. In this case, USL also provides fewer SLA
violations with 29% of the requests violating the SLA against
56% with single-step.

Our results show the benefit of a quick reaction to workload
increment and highlight that the extent of such reaction is also
relevant. Promptly setting an adequate pool size shortens the
time to stabilize the system and, in case of continued higher
load, reduces the total amount of required resources.

0 100 200 300 400 500

0
20

40
60

80
10

0

time (sec.)

qu
eu

e
si

ze

0
1

2
3

4
5

w
or

kl
oa

d
workload
single−step
USL

Fig. 14. Experiment 3: Queue size variation with long interval between spikes

The choice of the length of the monitoring period should
take into consideration the cost of running the control process,
in terms of utilization and time. Applying the procedure
proposed in this work has the benefit that decisions are
centralized, with no need for processing or communication
from the worker instances. For this to be correct, though, the
resources must be homogeneous.

Regarding workload decrease, we also favor a quick reac-
tion, but there are two distinguishing scenarios: when dealing
with occasional workload spikes, our proposal presents itself
as a good option; in case of frequent workload variations,
however, our proposal focused on cost reduction, which did not
appear to be the best option, as that may affect performance.

We must also consider that, when hiring a third-party cloud
infrastructure, the billing model may also affect the decision
to deallocate virtual machines. With some IaaS providers,
charges are calculated per hour, without the possibility to pay
for fractions. Accordingly, a better approach might be to tag
VMs for deallocation near the completion of full hours. This
simple change might already bring benefits to our proposal in
case of frequent variations in the workload, as it can postpone
reductions in the pool size without affecting costs.

VI. CONCLUSION

One of its major attributes of cloud computing is the ease to
scale up and down the resources allocated to a given system,
i.e., elasticity. In this paper, we explored the application
of the Universal Scalability Law, a scalability model that
allows estimating relations between performance and resource
demand, to accelerate the allocation and deallocation of virtual
machines in response to workload fluctuations. This is in
contrast with current standard approaches for auto-scaling,
which are normally based on utilization.

We showed that the proposal is beneficial in terms of
maintaining performance and lowering cost in cases of work-
load increments. In case of workload reduction, although
always more economic, in a few cases the quick reaction
may be harmful in terms of SLA violations, when consecutive
workload increases and decreases are frequent. As future work,
we expect to be possible to define additional tuning parameters
to minimize this effect.

We are currently working to validate this proposal by means
of trace-driven simulations with realistic Web workloads that
are non-uniform and with higher arrival rates.

The next step in this research is to work on the dynamic
runtime refinement of the model to improve the precision of
estimates. This is of interest specially for systems with low
contention and coherency. Initial experiments at low load could
produce a model that makes poor predictions at workload
levels far from those used in the estimates. Thus, we plan to
work on a feedback loop that observes deviations of measured
performance from estimates and uses the new measurements
to update the model at runtime.

ACKNOWLEDGMENT

This research was funded by CAPES and CNPq Proc.
305566/2013-0.

REFERENCES

[1] Gartner, “Gartner says worldwide cloud infrastructure-as-a-
service spending to grow 32.8 percent in 2015,” May 2015,
http://www.gartner.com/newsroom/id/3055225.

[2] N. Gunther, “A General Theory of Computational Scalability Based on
Rational Functions,” arXiv preprint arXiv:0808.1431, pp. 1–14, 2008.

[3] E. L. C. Mamani, L. A. Pereira, M. J. Santana, R. H. C. Santana,
P. N. Nobile, and F. J. Monaco, “Transient performance evaluation
of cloud computing applications and dynamic resource control in
large-scale distributed systems,” 2015 International Conference on
High Performance Computing \& Simulation (HPCS), pp. 246–
253, 2015. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=7237046

[4] H. Lim, S. Babu, J. Chase, and S. Parekh, “Automated control in cloud
computing: challenges and opportunities,” in Proceedings of the 1st
workshop on Automated control for datacenters and clouds, 2009, pp.
13–18.

[5] K. Salah, K. Elbadawi, and R. Boutaba, “Estimating service response
time for elastic cloud applications,” 2012 1st IEEE International Con-
ference on Cloud Networking, CLOUDNET 2012 - Proceedings, no.
January 2016, pp. 12–16, 2012.

[6] A. Aljohani, D. Holton, and I. Awan, “Modeling and Performance
Analysis of Scalable Web Servers Deployed on the Cloud,” 2013
Eighth International Conference on Broadband and Wireless Computing,
Communication and Applications, pp. 238–242, Oct. 2013.

[7] J. Dejun, G. Pierre, and C.-H. Chi, “Autonomous resource provisioning
for multi-service web applications,” in Proceedings of the 19th inter-
national conference on World wide web - WWW ’10, New York, New
York, USA, 2010.

[8] J. Dejun, G. Pierre, and C. Chi, “Resource Provisioning of Web
Applications in Heterogeneous Clouds,” in USENIX Conference on Web
Application Development, 2011.

[9] A. Harbaoui, B. Dillenseger, and J.-M. Vincent, “Performance character-
ization of black boxes with self-controlled load injection for simulation-
based sizing,” in French Conference on Operating Systems (CFSE),
2008.

[10] A. Harbaoui, N. Salmi, B. Dillenseger, and J.-M. Vincent, “Introducing
Queuing Network-Based Performance Awareness in Autonomic Sys-
tems,” Sixth International Conference on Autonomic and Autonomous
Systems, pp. 7–12, Mar. 2010.

[11] N. Salmi, B. Dillenseger, A. Harbaoui, J.-m. Vincent, and O. Labs,
“Model-based Performance Anticipation in Multi-tier Autonomic Sys-
tems : Methodology and Experiments,” International Journal on Ad-
vances in Networks and Services, vol. 3, no. 3, pp. 346–360, 2010.

[12] Z. Gong, X. Gu, and J. Wilkes, “PRESS: PRedictive Elastic reSource
Scaling for cloud systems,” in Proceedings of the 2010 International
Conference on Network and Service Management, CNSM 2010, 2010,
pp. 9–16.

[13] N. Vasić, D. Novaković, S. Miucin, D. Kostić, and R. Bianchini, “De-
jaVu: Accelerating Resource Allocation in Virtualized Environments,”
in Seventeenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2012.

[14] G. Mencagli, M. Vanneschi, and E. Vespa, “Control-theoretic adaptation
strategies for autonomic reconfigurable parallel applications on cloud
environments,” Proceedings of the 2013 International Conference on
High Performance Computing and Simulation, HPCS 2013, pp. 11–18,
2013.

[15] N. Gunther, “A Simple Capacity Model of Massively Parallel Transac-
tion Systems,” in CMG-CONFERENCE, 1993.

[16] G. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, spring joint computer conference, 1967, pp. 483—-485. [Online].
Available: http://dl.acm.org/citation.cfm?id=1465560

[17] W3C, “Web services architecture,” Feb. 2004,
http://www.w3.org/TR/ws-arch/.

[18] D. Pritchett, “Base: an Acid Alternative,” ACM Queue, vol. 6, no. 3, pp.
48–55, 2008.

[19] N. Gunther, Guerrilla Capacity Planning. Springer, Berlin Heidelberg,
2007.

